(問8)
以下の1000桁の数字から13個の連続する数字を取り出して その積を計算する. そのような積の中で最大のものの値はいくらか.
73167176531330624919225119674426574742355349194934
96983520312774506326239578318016984801869478851843
85861560789112949495459501737958331952853208805511
12540698747158523863050715693290963295227443043557
66896648950445244523161731856403098711121722383113
62229893423380308135336276614282806444486645238749
30358907296290491560440772390713810515859307960866
70172427121883998797908792274921901699720888093776
65727333001053367881220235421809751254540594752243
52584907711670556013604839586446706324415722155397
53697817977846174064955149290862569321978468622482
83972241375657056057490261407972968652414535100474
82166370484403199890008895243450658541227588666881
16427171479924442928230863465674813919123162824586
17866458359124566529476545682848912883142607690042
24219022671055626321111109370544217506941658960408
07198403850962455444362981230987879927244284909188
84580156166097919133875499200524063689912560717606
05886116467109405077541002256983155200055935729725
71636269561882670428252483600823257530420752963450
s = "" num = [] DATA.each {|line| s += line.chomp} for i in 0..(1000 - 13) num << s[i, 13].each_char.to_a.inject(1) {|r, j| r *= j.to_i} end puts num.max __END__ 73167176531330624919225119674426574742355349194934 96983520312774506326239578318016984801869478851843 85861560789112949495459501737958331952853208805511 12540698747158523863050715693290963295227443043557 66896648950445244523161731856403098711121722383113 62229893423380308135336276614282806444486645238749 30358907296290491560440772390713810515859307960866 70172427121883998797908792274921901699720888093776 65727333001053367881220235421809751254540594752243 52584907711670556013604839586446706324415722155397 53697817977846174064955149290862569321978468622482 83972241375657056057490261407972968652414535100474 82166370484403199890008895243450658541227588666881 16427171479924442928230863465674813919123162824586 17866458359124566529476545682848912883142607690042 24219022671055626321111109370544217506941658960408 07198403850962455444362981230987879927244284909188 84580156166097919133875499200524063689912560717606 05886116467109405077541002256983155200055935729725 71636269561882670428252483600823257530420752963450
Ruby の強力さがよく出ているのではないでしょうか。
(問9)
ピタゴラス数(ピタゴラスの定理を満たす自然数)とは a < b < c で以下の式を満たす数の組である.
a^2 + b^2 = c^2
例えば, 3^2 + 4^2 = 9 + 16 = 25 = 5^2 である.
a + b + c = 1000 となるピタゴラスの三つ組が一つだけ存在する.
これらの積 abc を計算しなさい.
for a in 1..998 for b in (a + 1)..999 c = 1000 - a - b next unless b < c if a *a + b * b == c * c puts a * b * c exit end end end
ちなみに a = 200, b = 375, c = 425 です。
(問10)
10以下の素数の和は 2 + 3 + 5 + 7 = 17 である.
200万以下の全ての素数の和を求めよ.
require 'prime' puts Prime.each(200_0000).inject(:+)
楽をして標準添付ライブラリを使ってしまいました。もちろん自分でエラトステネスの篩をプログラムしてもいいわけですが。問7ではそうしたので、ここでは許してもらいましょう。
(問11)
下の 20×20 の格子のうち, 斜めに並んだ4つの数字が赤くマークされている.(注意:ここでは赤くしてありません。)
08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48それらの数字の積は 26 × 63 × 78 × 14 = 1788696 となる.
上の 20×20 の格子のうち, 上下左右斜めのいずれかの方向で連続する4つの数字の積のうち最大のものはいくつか?
matrix = [] DATA.each do |line| matrix << line.split.map {|x| x.to_i} end num = [] matrix.each do |line| for i in 0..16 num << line[i] * line[i + 1] * line[i + 2] * line[i + 3] end end for i in 0..19 for j in 0..16 num << matrix[j][i] * matrix[j + 1][i] * matrix[j + 2][i] * matrix[j + 3][i] end end for i in 0..16 for j in 0..16 num << matrix[i][j] * matrix[i + 1][j + 1] * matrix[i + 2][j + 2] * matrix[i + 3][j + 3] end end for j in 3..19 for i in 0..16 num << matrix[i][j] * matrix[i + 1][j - 1] * matrix[i + 2][j - 2] * matrix[i + 3][j - 3] end end puts num.max __END__ 08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08 49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00 81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65 52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91 22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80 24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50 32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70 67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21 24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72 21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95 78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92 16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57 86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58 19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40 04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66 88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69 04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36 20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16 20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54 01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
(問12)
三角数の数列は自然数の和で表わされ, 7番目の三角数は 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28 である. 三角数の最初の10項は:
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
となる.
最初の7項について, その約数を列挙すると, 以下のとおり.
1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
これから, 7番目の三角数である28は, 5個より多く約数をもつ最初の三角数であることが分かる.
では, 500個より多く約数をもつ最初の三角数はいくつか.
class Integer def divide2(include1=false) ar = [] s = include1 ? 1 : 2 for i in s..(self ** 0.5) ar.push([i, self / i]) if (self % i).zero? end ar end def divisors divide2(true).flatten.uniq.sort end end i = 1 tri = 0 loop do tri += i i += 1 next unless tri.divisors.size > 500 puts tri break end
たまたまここで約数を求めるメソッドを作っていたので、流用しました。多少時間がかかって、自分の環境では 9秒ほどでした。
(問13)
以下の50桁の数字100個の和の上位10桁を求めよ.
(数字は略します。コード内を参照して下さい。)
st = DATA.inject(0) {|r, j| r += j.to_i}.to_s puts st[0, 10] __END__ 37107287533902102798797998220837590246510135740250 46376937677490009712648124896970078050417018260538 74324986199524741059474233309513058123726617309629 91942213363574161572522430563301811072406154908250 23067588207539346171171980310421047513778063246676 89261670696623633820136378418383684178734361726757 28112879812849979408065481931592621691275889832738 44274228917432520321923589422876796487670272189318 47451445736001306439091167216856844588711603153276 70386486105843025439939619828917593665686757934951 62176457141856560629502157223196586755079324193331 64906352462741904929101432445813822663347944758178 92575867718337217661963751590579239728245598838407 58203565325359399008402633568948830189458628227828 80181199384826282014278194139940567587151170094390 35398664372827112653829987240784473053190104293586 86515506006295864861532075273371959191420517255829 71693888707715466499115593487603532921714970056938 54370070576826684624621495650076471787294438377604 53282654108756828443191190634694037855217779295145 36123272525000296071075082563815656710885258350721 45876576172410976447339110607218265236877223636045 17423706905851860660448207621209813287860733969412 81142660418086830619328460811191061556940512689692 51934325451728388641918047049293215058642563049483 62467221648435076201727918039944693004732956340691 15732444386908125794514089057706229429197107928209 55037687525678773091862540744969844508330393682126 18336384825330154686196124348767681297534375946515 80386287592878490201521685554828717201219257766954 78182833757993103614740356856449095527097864797581 16726320100436897842553539920931837441497806860984 48403098129077791799088218795327364475675590848030 87086987551392711854517078544161852424320693150332 59959406895756536782107074926966537676326235447210 69793950679652694742597709739166693763042633987085 41052684708299085211399427365734116182760315001271 65378607361501080857009149939512557028198746004375 35829035317434717326932123578154982629742552737307 94953759765105305946966067683156574377167401875275 88902802571733229619176668713819931811048770190271 25267680276078003013678680992525463401061632866526 36270218540497705585629946580636237993140746255962 24074486908231174977792365466257246923322810917141 91430288197103288597806669760892938638285025333403 34413065578016127815921815005561868836468420090470 23053081172816430487623791969842487255036638784583 11487696932154902810424020138335124462181441773470 63783299490636259666498587618221225225512486764533 67720186971698544312419572409913959008952310058822 95548255300263520781532296796249481641953868218774 76085327132285723110424803456124867697064507995236 37774242535411291684276865538926205024910326572967 23701913275725675285653248258265463092207058596522 29798860272258331913126375147341994889534765745501 18495701454879288984856827726077713721403798879715 38298203783031473527721580348144513491373226651381 34829543829199918180278916522431027392251122869539 40957953066405232632538044100059654939159879593635 29746152185502371307642255121183693803580388584903 41698116222072977186158236678424689157993532961922 62467957194401269043877107275048102390895523597457 23189706772547915061505504953922979530901129967519 86188088225875314529584099251203829009407770775672 11306739708304724483816533873502340845647058077308 82959174767140363198008187129011875491310547126581 97623331044818386269515456334926366572897563400500 42846280183517070527831839425882145521227251250327 55121603546981200581762165212827652751691296897789 32238195734329339946437501907836945765883352399886 75506164965184775180738168837861091527357929701337 62177842752192623401942399639168044983993173312731 32924185707147349566916674687634660915035914677504 99518671430235219628894890102423325116913619626622 73267460800591547471830798392868535206946944540724 76841822524674417161514036427982273348055556214818 97142617910342598647204516893989422179826088076852 87783646182799346313767754307809363333018982642090 10848802521674670883215120185883543223812876952786 71329612474782464538636993009049310363619763878039 62184073572399794223406235393808339651327408011116 66627891981488087797941876876144230030984490851411 60661826293682836764744779239180335110989069790714 85786944089552990653640447425576083659976645795096 66024396409905389607120198219976047599490197230297 64913982680032973156037120041377903785566085089252 16730939319872750275468906903707539413042652315011 94809377245048795150954100921645863754710598436791 78639167021187492431995700641917969777599028300699 15368713711936614952811305876380278410754449733078 40789923115535562561142322423255033685442488917353 44889911501440648020369068063960672322193204149535 41503128880339536053299340368006977710650566631954 81234880673210146739058568557934581403627822703280 82616570773948327592232845941706525094512325230608 22918802058777319719839450180888072429661980811197 77158542502016545090413245809786882778948721859617 72107838435069186155435662884062257473692284509516 20849603980134001723930671666823555245252804609722 53503534226472524250874054075591789781264330331690
言語によっては扱うことのできる整数の桁数に上限があるので、こういう問題があるのでしょうが、Ruby はメモリが許すかぎりの桁数の整数を扱うことができるので、何の変哲もないコードになっています。ちなみに上位 10桁だけでなく、和そのものが求められて、実際
5537376230390876637302048746832985971773659831892672
となります。これが例えばC言語とかだと、さらに工夫が要ることになります。
(問14)
正の整数に以下の式で繰り返し生成する数列を定義する.
n → n/2 (n が偶数)
n → 3n + 1 (n が奇数)
13からはじめるとこの数列は以下のようになる.
13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1
13から1まで10個の項になる. この数列はどのような数字からはじめても最終的には 1 になると考えられているが, まだそのことは証明されていない(コラッツ問題)
さて, 100万未満の数字の中でどの数字からはじめれば最長の数列を生成するか.
注意: 数列の途中で100万以上になってもよい
def sequence(n) sq = [n] begin n = n.even? ? (n / 2) : (3 * n + 1) sq << n end until n == 1 sq end len = [] for i in 1...100_0000 len << sequence(i).size end puts len.index(len.max) + 1
12秒ほどかかりました。最長の数列の長さも簡単に求められて、それは 525 です。厳密には、この長さになる数列が複数存在しないか確かめるべきなのかも知れません。実際、そのような数列が1通りしかないことは別に確かめてあります。
(問15)
2×2 のマス目の左上からスタートした場合, 引き返しなしで右下にいくルートは 6 つある.
(元記事では画像があるので、ここを参照して下さい。)
では, 20×20 のマス目ではいくつのルートがあるか.
def factorial(n) #階乗 (1..n).to_a.inject(:*) end def cbn(m, n) (n != 0 and m != n) ? ( factorial(m) / (factorial(m - n) * factorial(n)) ) : 1 end puts cbn(40, 20)
40個の中から 20個を選ぶ組合せの数を求めればよい。組合せの数はたまたまここで実装していたので、流用しました。
(問16)
2^15 = 32768 であり, これの数字和 ( 各桁の和 ) は 3 + 2 + 7 + 6 + 8 = 26 となる.
同様にして, 2^1000 の数字和を求めよ.
puts (2 ** 1000).to_s.each_char.inject(0) {|r, j| r += j.to_i}
1行でおしまいですね。